รศ.ดร. จิรวรรณ อภิรักษากร

รศ.ดร. จิรวรรณ อภิรักษากร
รศ.ดร. จิรวรรณ อภิรักษากร

สาขาวิชาเทคโนโลยีชีวภาพ

การศึกษา (Education)

1. ปริญญาตรี วิทยาศาสตรบัณฑิต (ชีววิทยา) จุฬาลงกรณ์หาวิทยาลัย
2. ปริญญาโท วิทยาศาสตรมหาบัณฑิต (เทคโนโลยีทางชีวภาพ) จุฬาลงกรณ์มหาวิทยาลัย
3. ปริญญาเอก วิทยาศาสตรดุษฎีบัณฑิต (เทคโนโลยีชีวภาพ)  มหาวิทยาลัยเกษตรศาสตร์

ความสนใจด้านการวิจัย (Research Interest)

  1. Hydrolytic enzymes for prebiotic preparation
  2. Potential production of nutraceuticals by lactic acid bacteria
  3. Functional food innovation from probiotic and prebiotic

ผลงานวิชาการ
รายการผลงานวิชาการ
1Phirom-on K., Apiraksakorn J. 2022. Eco-friendly extraction of banana peel cellulose using a wood charcoal ash solution and application of process wastewater as a naturally derived produc. Bioresource Technology Reports. 19: 101174. https://doi.org/10.1016/j.biteb.2022.101174
2Songserm P., Klanrit Poramaporn, Klanrit Poramate, Phetcharaburanin J., Thanonkeo P., Apiraksakorn J., Phomphrai K., Klanrit Preekamol. Antioxidant and Anticancer Potential of Bioactive Compounds from Rhinacanthus nasutus Cell Suspension Culture. Plants. 11(15): 1994. https://doi.org/10.3390/plants11151994 (registering DOI)
3Phirom-on K., Apiraksakorn J. 2021. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience. 41: 101083. https://doi.org/10.1016/j.fbio.2021.101083
4Thin R., Techaparin A., Klanrit Preekamol, Klanrit Poramaporn, Apiraksakorn J. 2021. Ethanol and beta-glucan production from the economically feasible medium prepared from paper napkin hydrolysate. Asia-Pacific Journal of Science and Technology. 26(4): APST-26-04-10. DOI: https://doi.org/10.14456/apst.2021.40
5Vann K., Techaparin A., Apiraksakorn J. 2020. Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology. 57(11):3947-3954. DOI: 10.1007/s13197-020-04423-4
6Apiraksakorn, J., Sukklang S. and Boonmee M. 2017. The evaluation of bio-energy produced from ethanol fermentation using corncob dust hydrolysate. Energy Procedia. 138C: 151-156.
7Kuancha C, Sukklang S., Detvisitsakun C., Chanton S., and Apiraksakorn, J. 2017. Fermentable sugars production from lignocellulosic materials hydrolysis by thermophilic enzymes from Bacillus subtilis J12. Energy Procedia. 138C: 145-150.
8Phachan N, Fiala K, Apirakakorn J. 2017. Isolation of cellulolytic clostridia and their performance for one-step butanol production from sugarcane bagasse. Energy Procedia. 138: 163-168.
9Chantorn, S., Piyapittayanun C., Khumphai P., Pannanusorn S., Phannachet K., Apiraksakorn J. 2016. Suitable conditions for xylanases activities from Bacillus sp. GA2(1) and Bacillus sp. GA1(6) and their properties for agricultural residues hydrolysis. Songklanakarin Journal of Science and Technology. 38(2): 177-182.
10Leelavatcharamas, V., Arbsuwan, N., Apiraksakorn, J., Laopaiboon, P. and Kishida, M. 2011. Thermotolerant bacteriocin-producing lactic acid bacteria isolated from Thai local fermented foods and their bacteriocin productivity. Biocontrol Science. 16: 33-40.
11Apiraksakorn, J., Nitisinprasert, S. and Levin, R. E. 2008. Grass degrading beta-1,3-1,4-D-glucanases from Bacillus subtilis GN156: Purification and characterization of glucanase J1 and pJ2 processing extremely acidic pI. Appl. Biochem. Biotechnol. 149: 53-66.
12Apiraksakorn, J., Buwjoom, T. and Nitisinprasert, S. 2006. Characterization of Grass Degrading Bacteria Active on beta-1,3-1,4-D-glucans from Bacillus subtilis GN156 Potential Use for Grass Silage-Making. Kasetsart Journal (Nat. Sci.). 40: 136-147.

Message us