

Master of Science Program in Industrial Biotechnology

(International Program)

2014

Department of Biotechnology, Faculty of Technology

&

Graduate School Khon Kaen University

1. Rationale & Objectives

Graduate Program in Biotechnology, Faculty of Technology provides a nurturing interactive environment to promote learning in all aspects of biotechnology, and to promote integration of multi-disciplinary approaches to the conduct of research. The program merges the study of physical and life sciences and bioengineering, which offers courses focusing on fundamental sciences, principle and applied biotechnology, process and biochemical engineering, genetic engineering, quality assurance, experimental design, and other elective courses on diverse areas of biotechnology. Graduate students are actively engaged in both fundamental and applied research designed to have targeted impact on biotechnology. Students will have the opportunities to present their research work and gain practical experiences abroad.

Master of Science Program in Industrial Biotechnology (International Program) aims to prepare highly-qualified and outstanding graduates, who will be recognized for their knowledge, academic proficiency, leadership, creativity as well as moral and ethical judgment. The graduates will also be able to generate advanced research work in industrial biotechnology, which will be beneficial for the community. This program offers the courses in the principles and theories of industrial biotechnology as well as the applications of biotechnology techniques to resolve the bio-industrial problems, and to address a wide variety of problems and applications.

2. Academic Term

First semester: August-December Second semester: January-April

3. Admission Requirement

- 3.1 Holding a Bachelor's degree or equivalent academic credentials, with a minimum undergraduate grade-point average (GPA) of 3.25 (Plan A1) or 2.75 (Plan A2). All GPAs are based on a 4.00 scale.
- 3.2 Every applicant whose native language is not English, or whose undergraduate instruction was not in English, must provide an English proficiency test score. Your score will not be accepted if it is more than two years old from the start of your admission term.

The following English proficiency tests are accepted for graduate admissions, and a minimum score should be as follows:

TOEFL (Paper-based)	475
TOEFL (Computer-based)	152
TOEFL (Internet-based)	52
IELTS	5

An applicant who cannot meet these criteria is required to take KKU English proficiency test and should consult the executive graduate program committee.

- 3.3 Two (2) letters of recommendation
- 3.4 Official transcript(s) (original or Certified True Copies) of all academic records. All foreign documents must be accompanied with an English translation by an approved foreign credential evaluation service.
- 3.5 A copy of a degree certificate in English
- 3.6 A one-page statement of purpose explaining why you are applying and how you believe this degree will help you accomplish your goals.
- 3.7 Additional document needed for international students: A copy of a passport (profile page)

4. Program Plan

There are 2 plans under this program:

<u>Plan A1</u> (Research plan) is for an applicant who holds a Bachelor's degree in Biotechnology with a Grade Point Average (GPA) of at least 3.25. Students will conduct a research for a total of 36 credits and participate in 2 required courses (graduate seminars 1 & 2, non-credit).

<u>Plan A2</u> (Research and Coursework plan) is for an applicant who holds a Bachelor's degree in Biotechnology, Engineering or Science of related fields, with a GPA of at least 2.75. Students have to enroll in several required and elective courses for 21 credits and conduct a research for a total of 15 credits.

5. The Structure of the Curriculum

To obtain a Master of Science degree in Industrial Biotechnology, the student must choose to follow either Plan A1 or Plan A2 below, and fulfill their requirements. Each requires a total of 36 credits.

Course	The Number of Credit Hours	
Course	Plan A1	Plan A2
Required Course	2 (non-credit)*	15
Elective Course	-	6
Thesis	36	15
Total	36	36

* Seminar in Industrial Biotechnology I & II

6. Courses

6.1 Required Course

672 731	Biochemical Engineering and Bioprocess Design	3 credits
672 741	Business and Regulatory Practices in Bioindustries	2 credits
672 771	Industrial Fermentation Technology	3 credits
672 781	Research Methodology in Biotechnology	3 credits
672 782	Industrial Visits to Bio-Manufacturing Industries	2 credits
672 891	Seminar in Industrial Biotechnology I	1 credit

672 892	Seminar in Industrial Biotechnology II	1 credit
---------	--	----------

6.2 Elective Course

672 721	Biotechnological Instrumentation	2 credits
672 722	Biotechnological Instrumentation Laboratory	1 credit
672 733	Mass Transfer and Separation Technology	3 credits
672 751	Environmental Biotechnology	3 credits
672 752	Bioenergy Technology	3 credits
672 761	Molecular Biotechnology	3 credits
672 762	Plant and Animal Cell Cultures for Fine	3 credits
	Biochemical Production	
672 763	Genetic Engineering Laboratory	1 credit
672 764	Protein Engineering	3 credits
672 765	Bioinformatics	3 credits
672 772	Appropriate Industrial Biotechnology for	3 credits
	Developing Countries	
672 773	Biotechnology for Food and Beverage Industries	3 credits
672 774	Downstream Processing and Product Formulation	3 credits
	-	

6.3 Thesis

672 898	Thesis (Plan A1)	36 credits
672 899	Thesis (Plan A2)	15 credits

7. Study Plan (2-year program)

* non-credit

Course	Course Name		er of Credits
Code	Course Name	Plan A1	Plan A2
Year 1 Se	emester 1		
672 771	Industrial Fermentation Technology	-	3
672 781	Research Methodology in Biotechnology	-	3
672 xxx	Elective(s)	-	≥ 3
672 898	Thesis (Plan A1)	9	
	Total credits for this semester	9	9
	Accumulated credits	9	9
Year 1 Se	emester 2		
672 731	Biochemical Engineering and Bioprocess Design	-	3
672 781	Industrial Visits to Bio-Manufacturing Industries	-	2
672 891	Seminar in Industrial Biotechnology I	1*	1
672 xxx	Elective(s)	-	≥ 3

Course	Course Name	The Numbe	er of Credits
Code		Plan A1	Plan A2
672 898	Thesis (Plan A1)	9	-
	Total credits for this semester	9 (1*)	9
	Accumulated credits	18 (1*)	18
Year 2 Se	emester 1		l
672 741	Business and Regulatory Practices in Bioindustries	-	2
672 892	Seminar in Industrial Biotechnology II	1*	1
672 898/	Thesis (Plan A1 or A2)	9	6
672 899		9	0
	Total credits for this semester	9 (1*)	9
	Accumulated credits	27 (2*)	27
Year 2 Se	emester 2		L
672 898/	Thesis (Blan A1 or A2)	9	9
672 899	Thesis (Plan A1 or A2)	7	7
	Total credits for this semester	9	9
	Accumulated credits	36	36

8. Course Description

Course	Course Name	Credits	
Code			
672 721	Instrumentation and Analytical Techniques in Biotechnology	2	
	Basic knowledge in scientific instruments, electronics and elect	ricity, pH and	
	Buffer, balance, pipette and autopipette, hot air oven and incul	bator, cooling	
	system, air filter system, ultrasonic cleaner, water purifica	ation system,	
	centrifugation techniques, microscopic techniques, enzymatic assay techniques,		
	chromatographic techniques, electrophoretic techniques, molecular biological		
	techniques, spectroscopic techniques, immunological techniques	, cell culture	
	techniques		
672 722	Instrumentation and Analytical Techniques in Biotechnology	1	
	Laboratory		
	The laboratory experiments consist of pH meter, balance an	d autopipette,	
	microscopic techniques, centrifuge, gas chromatography, high perfo	ormance liquid	
	chromatography, electrophoresis, spectrophotometer, immunolo	ogy and cell	
	culture		

Course Code	Course Name	Credits
672 731	Biochemical Engineering and Bioprocess Design	2
	Historical development, evolution and scope of biochemical engineering will	
	be reviewed. Topics to be revealed include biocatalysts, the kinetic	cs of enzyme-
	catalyzed reactions, cell thermodynamics, metabolic stoichiometry a	and energetics,
	kinetics of substrate utilization, product formation and biomass pro-	duction in cell
	cultures, process parameter measurement, monitoring and con-	trol, transport
	phenomena in bioprocess systems, scale-up concepts and methods.	
	control environments, types and design of bioreactors, the criter	-
	engineering and economic analysis for optimization of bioprocess	design will be
	treated.	
672 733	Mass Transfer and Separation Technology	3
	Principle of mass transfer, principle of unsteady-state and co	nvective mass
	transfer, evaporation of biological materials, drying of bioprocess n	-
	and continuous gas-liquid separation processes, vapor-liquid separat	tion processes,
	membrane, liquid-liquid and liquid-solid separation processes,	, mechanical-
	physical separation processes	
672 741	Business and Regulatory Practices in Bioindustries	2
	The significance of biotechnology and the growth of bioindu	ustries will be
	revealed, some key term e.g. biorisk, biohazard, biosafety and bioregulations will	
	be defined and elaborate, Though case studies the commercialization of	
	Organisms with Novel Traits (ONTs) and living Modified Organisms (LMOs)	
	will be demonstrated, Thus results in the international movements to create	
	regulatory measures for biotechnology safety, the ecosystem conser	
	sustainability of biological diversity, The patent screening, patent	ting, licensing
	protocol, and biosafety regulations will be revealed	
672 751	Environmental Biotechnology	3
	Control and protection of pollution to the environment b	
	technological techniques such as biological treatment, biodegrada	
	biotics, biostimulation, phytoremediation of contaminated matrices	
	the genetically engineered microbes for a remediation of recalcitra	nt xenobiotics
	and innovative remediation technology	
672 752	Bioenergy Technology	3
	Types of bioenergy; bioenergy conversion technologies	(biochemical,
	physicochemical, thermocemical), birefinery, technologies by use	

Course Code	Course Name	Credits	
672 761	Molecular Biotechnology	3	
	Fundamentals of molecular biotechnology, structures and functi	ons of cellular	
	macromolecules (sugars, lipids, proteins and nucleic acids) and a	cell, standard	
	methods in molecular biotechnology; for example, isolation and elec	ctrophoresis of	
	DNA and RNA, hybridization of nucleic acids, the use of enzymes in the		
	modification of nucleic acids, polymerase chain reaction (P	CR), cloning	
	procedures, expression of recombinant proteins, isolation and p	ourification of	
	proteins, principles of recombinant DNA technology, examples of	genetic mani-	
	pulation of different organisms and applications in biotechnology, i	ntroduction to	
	molecular database searches, analyses and bioinformatics, inf	ormation and	
	discussion of biosafety and impacts of genetically modified	organisms on	
	humans, society and environments		
672 762	Plant and Animal Cell Cultures for Fine Biochemical Production	3	
	Introduction, principle in plant and animal cell culture, cultiv	ation of plant	
	and animal cell in bioreactor, production of fine biochemical by pla	ant and animal	
	cell culture, gene transformation into plant and animal cell and its sa	afety, and case	
	study of application of plant and animal biotechnology		
672 763	Genetic Engineering Laboratory	1	
	Genetic engineering laboratory techniques such as chrome	osomal DNA,	
	plasmid and RNA extraction, nucleic acid analysis using spectrop	hotometer and	
	agarose gel electrophoresis, gene cloning, transformation of recor	nbinant DNA,	
	DNA or gene amplification, Southern, Northern and Western blottin	g techniques	
672 764	Protein Engineering	3	
	Protein structure, properties and functions of protein particu	larly enzyme,	
	structure and function relationship of protein, the use of genetic	and chemical	
	technology to change the structure and function for producing r	novel products	
	with specific and desired properties, examples of modified proteins	s and enzymes	
	used in medicine, agriculture and industry		
672 765	Bioinformatics	3	
	Introduction to bioinformatics, application of bioinformatics	database for	
	structural analysis, DNA and amino acid sequences analysis, datal	base searching	
	and molecular modeling design for analysis of structure and function	on of gene and	
	protein, application of computer program on internet for analysis	of biological	
	data, molecular biochemistry and applications of bioinformatics	in agriculture,	
	environment, bio-industry and medical		
u	1		

Course Code	Course Name	Credits
672 771	Industrial Fermentation Technology	3
	Principle of fermentation processes, microbial growth kinetics an techniques of isolation, preservation and improvement of industrial microorganisms, media fermentation and preparation for industrial media and air sterilization, development of inocula for industrial measurement and control in fermenter and fermenter operation, agitation for oxygen requirements of industrial fermentations a design for scale-up	ally important fermentation, fermentation, aeration and
672 772	Appropriate Industrial Biotechnology for Developing Countries Definition, examples and sustainability of appropriate technology and developing countries, applications of biotechnology agriculture and environment, technology transfer	
672 773	Biotechnology for Food and Beverage Industries The applications of microorganisms, enzymes, bioreactors ar kinetics for food processing and quality assurance, the a biotechnology in the production of fermented oriental foods, am flavor enhancers, yoghurt and cheese, wines, beers, sake, and heat use of modern biotechnology techniques in the improvement of start fermented food and beverages, the possibility for producing GN livestock and GM-fishes.	pplication of ino acids and lth drinks, the ter cultures for
672 774	Downstream Processing and Product Formulation Introduction, recovery of particulates between cell and s (filtration, centrifugation and sedimentation), product isolation (e sorption), precipitation, chromatography and fixed-bed adsorpt processing, membrane separations, electrophoresis, combine (immobilization, whole broth processing and mass recycle), biopro- trains, product formulation kinetics segregated kinetic models o product formation.	extraction and ion by batch ad operations oduct recovery
672 781	Research Methodology in Biotechnology Definition and basic principles of research, conceptual research research review, research design in biotechnology, writing of proposal, application of statistical procedures for data analysis, v research report and research publication	the research

Course	Course Name	Credits
Code		
672 782	Industrial Visits to Bio-Manufacturing Industries	2
	Studies of the selected food, biological and agro industries, report writing and	
	presentation	
672 891	Seminar in Industrial Biotechnology I	1
	Searching, compiling, and oral presentation of current interesting research	
	articles in biotechnology including a written report in a form of research article or	
	review article	
672 892	Seminar in Industrial Biotechnology II	1
	Searching, compiling, and oral presentation of current interesting research	
	articles in biotechnology or oral presentation on the progress of master thesis	
	including a written report in a form of research article or review artic	cle
672 898	Thesis	36
	Conducting an experiment or a research and making thesis in a s	pecial topic in
	biotechnology under the thesis advisory committee.	
672 899	Thesis	15
	Conducting an experiment or a research and making thesis in a s	pecial topic in
	biotechnology under the thesis advisory committee.	

9. Evaluation and Graduation Requirements

- 9.1 Students must take the Proposal Examination within the second semester of the first year of study. All examination committee is appointed by the Faculty.
- 9.2 Students must report the research progress every semester (Oral presentation).
- 9.3 Students have to take a Thesis Defense according to the Code of Conduct of Graduate School, Khon Kaen University.
- 9.4 To graduate, students must have a Grade-Point Average (GPA) of at least 3.00 based on a 4.00 scale.
- 9.5 Students have to present their research work at the national or international conference (with full proceedings) or have at least 1 national or international publication (according to the Code of Conduct of Graduate School, Khon Kaen University).

10. Research Areas

Research in the Department of Biotechnology, Faculty of Technology, Khon Kaen University is highly interdisciplinary, significantly contributing to the advancement of different areas of biotechnology. The research areas include

- Bio-energy Production (Biogas, Bio-ethanol, Bio-butanol, Bio-hydrogen and Biodiesel)
- Fermented Food and Beverages
- Bio-based Products and Process Development
- Molecular Biology and Genetic Engineering
- Plant Tissue Culture and Animal Cell Culture
- Bio-remedial Approaches for Environments
- Enzyme Technology

11. How to Apply

To apply for a Graduate Program offered by the Department of Biotechnology, please visit a Graduate School website (http://www.gs.kku.ac.th/home/index.php/main-english.html) and choose one of the following ways for applying.

 Download the application form and send all documents to graduate@kku.ac.th or by post to the following address. Graduate School
3rd Floor, Bimala Kalakicha Building, Khon Kaen University
123 Mittraphap Road (Friendship Highway)
Ampher Mueng, Khon Kaen, 40002
THAILAND

2. Apply online at the website

https://gs.kku.ac.th (follow on-screen instruction)

Graduate school flexibly allows the prospective international applicants to apply throughout the year, but normally the first semester will begin in August, and the second semester will begin in January. So, please make sure you complete the application process before the deadline of your expected semester.

12. Tuition & Fees

Tuition for the graduate international program per semester is as follows: USD 1,670. For international students, there is an extra international-student fee for USD 500. Incoming students are responsible for their own traveling, accommodations and living expenses.

13. Financial Assistance

Qualified international applicants with outstanding academic achievement are eligible to apply for scholarships offered by Khon Kaen University in conjunction with Faculty of Technology and Academic Departments.

14. Research Facilities

The University and the Faculty offer many research facilities that are available to graduate students across disciplines. The Faculty of Technology and the Department of Biotechnology also provide basic and specialized laboratory equipment which is available for student use; for example, pH meters, balances, micropipettes, autoclaves, ultracentrifuges, fermenters, gas chromatography (GC), high performance liquid chromatography (HPLC), Thermal cycler (PCR machine), DNA and protein gel electrophoresis, gel documentation, etc. Students must take a course which introduces how to operate the equipment and can also acquire training from the Department.

15. Residence Life

Students may choose to live on campus with the University's comfortable residence halls (On-campus housing). Free WiFi Internet Hotspots are available in most areas on campus. Please contact the University's housing service for more information. Students may choose to live in local communities surrounding KKU (Off-campus housing).

16. Transportation

The campus is easily accessed by car and by bus using Mittraphap Road (Friendship highway) as well as by plane through Khon Kaen Airport. The University also provides a connecting shuttle bus service on campus for students, staffs and visitors (free of charge).

17. More Information

If further information and assistance are needed, please contact:

Professor Dr. Alissara Ruengsang Department of Biotechnology, Faculty of Technology, Khon Kaen University, 123 Mittraphap Road, A. Muang, Khon Kaen, 40002 Thailand Email: alissara@kku.ac.th